

Approved for public release; further dissemination unlimited

Preprint

UCRL-JC-144754

Global Static Indexing for
Real-time Exploration of
Very Large Regular Grids

V. Pascucci and R. J. Frank

This article was submitted to
Super Computing 2001, Denver, CO.

Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United
States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the
University of California, and shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication,
this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author.

This report has been reproduced

directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401

http://apollo.osti.gov/bridge/

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161
http://www.ntis.gov/

OR

Lawrence Livermore National Laboratory

Technical Information Department’s Digital Library
http://www.llnl.gov/tid/Library.html

3

Global Static Indexing for Real-time Exploration of Very
Large Regular Grids

Valerio Pascucci
Center for Applied Scientific Computing

Lawrence Livermore National Laboratory

pascucci@llnl.gov

Randall J. Frank
Livermore Computing

Lawrence Livermore National Laboratory

rjfrank@llnl.gov

ABSTRACT
In this paper we introduce a new indexing scheme for
progressive traversal and visualization of large regular grids. We
demonstrate the potential of our approach by providing a tool
that displays at interactive rates planar slices of scalar field data
with very modest computing resources. We obtain
unprecedented results both in terms of absolute performance
and, more importantly, in terms of scalability. On a laptop
computer we provide real time interaction with a 20483 grid (8
Giga-nodes) using only 20MB of memory. On an SGI Onyx we
slice interactively an 81923 grid (½ tera-nodes) using only 60MB
of memory. The scheme relies simply on the determination of an
appropriate reordering of the rectilinear grid data and a
progressive construction of the output slice. The reordering
minimizes the amount of I/O performed during the out-of-core
computation. The progressive and asynchronous computation of
the output provides flexible quality/speed tradeoffs and a time-
critical and interruptible user interface.

1. INTRODUCTION
The real time processing of very large volumetric meshes
introduces specific algorithmic challenges due to the
impossibility of fitting the input data in the main memory of a
computer. The basic assumption (RAM computational model) of
uniform-constant-time access to each memory location is not
valid because part of the data is stored out-of-core or in external
memory. The performance of most algorithms does not scale
well in the transition from the in-core to the out-of-core
processing conditions. The performance degradation is due to
the high frequency of I/O operations that may start dominating
the overall running time.
Out-of-core computing [29] addresses specifically the issues of
algorithm redesign and data layout restructuring to enable data
access patterns with minimal performance degradation in out-of-
core processing. Results in this area are also valuable in parallel
and distributed computing where one has to deal with the similar
issue of balancing processing time with data migration time.
In this paper we introduce a new storage layout for rectilinear

grids of data that minimizes the amount of disk access necessary
during a progressive traversal. The layout is coupled with a
simple mapping of the 3D index (i, j, k) of an element in the grid
to its 1D index I on disk. This new mapping improves on the
approach introduced in [25] by using a conceptual 2n tree
decomposition instead of a binary tree.
The scheme has three key features that make it particularly
attractive. First the order of the data is independent of the out-of-
core blocking factor so that its use in different settings (e.g. local
disk access or network transmission) does not require large data
reorganization. Secondly the conversion from the standard Z-
order indexing to the new index can be implemented with a
simple sequence of bit-string manipulations making it appealing
for possible hardware implementations. Third, there is no data
replication. This is especially desirable when the data is
accessed through slow connections and avoids performance
degradation when the data is dynamically modified.
We use this approach to optimize progressive visualization
algorithms where the input grid is traversed like a hierarchical
structure (from the coarse level to the fine level) while
displaying a continuously improved image of the output. In this
paper we focus our attention to the case of progressive
computation of planar slices with general orientation. The
scheme achieves interactive performance for progressive slicing
of extremely large datasets using moderate resources. On a
laptop computer we provide real time interaction with a grid of
20483 using only 20MB of cache memory. Until recently real
time navigation with this dataset [21] was only possible on a
large multiprocessor systems, limiting interaction to the
computation of orthogonal slices and requiring the duplication
of the data for each slicing direction. With the new approach,
data replication is not necessary and on the same multiprocessor
system we can slice interactively at any orientation a dataset of
81923 resolution (½ tera-nodes grid) using only 60MB of cache
memory and four threads.

2. PREVIOUS WORK
Interest in external memory algorithms [29], also known as out-
of-core algorithms, has been increasing in recent years in the
computer science community since they address systematically
the problem of non-uniform memory structure of modern
computers (fast cache, main memory, hard disk, etc). This issue
is particularly important when dealing with large data-structures
that do not fit in the main memory of a single computer since the
access time to each memory unit is dependent on its location.
New algorithmic techniques and analysis tools have been
developed to address this problem for example in the case of

© 2001 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by a contractor or affiliate
of the U.S. Government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.
SC2001 November 2001, Denver © 2001 ACM 1-58113-293-X/01/0011
$5.00

mailto:rjfrank@llnl.gov

geom
[4][1
distri
the p
filling
data
[14][
wide
hiera
prope
guara
pseud
to rec
each
Recen
space
storag
Balm
navig
point
neigh
nodes
triang
used
refine
traver
been
allow
hiera
In the
effici
extern
storag
geom
advan
partic
layou
benef

Fig
the

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

ure 1: (a-e) The first five levels of resolution of the 2D Lebesgue’s space filling curve. (f-j) The first five levels of resolution of
 3D Lebesgue’s space filling curve.
4

etric algorithms [1][2][13][20] or scientific visualization
0]. Closely related issues emerge in the area of parallel and
buted computing where remote data transfer can become
rimary bottleneck in the computation. In this context space
 curves are often used as a tool to determine very quickly

distribution layouts that guarantee good geometric locality
22][24]. Space filling curves [27] have been also used in a

variety of applications [3] both because of their
rchical fractal structure as well as for their spatial locality
rties. The most popular is the Hilbert curve [15], which
ntees the best geometric locality properties [23]. The
o-Hilbert scanning order [7][8][16] generalizes the scheme
tilinear grids that have different number of samples along

coordinate axis.
tly Lawder [17][18] explored the use of different kinds of

 filling curves to develop indexing schemes for data
e layout and fast retrieval in multi-dimensional databases.

elli at al. [5][6] use the Z-order space filling curve to
ate efficiently a quad-tree data-structure without using
ers. They use simple, closed formulas for computing
boring relations and nearest common ancestors between
 to allow fast generation of adaptive edge-bisection
ulations. They improve on the basic data-structure already
for terrain visualization [11][19] or adaptive mesh

ment [26]. The use of the Z-order space filling curve for
sal of quadtrees [28] (also called Morton-order) and has
also proven useful in the speedup of matrix operations
ing them to make better use of the memory cache
rchies [9][12][29].
 approach proposed here a new data layout is used to allow
ent progressive access to volumetric information stored in
al memory. This is achieved by combining interleaved
e of the levels in the data hierarchy while maintaining
etric proximity within each level of resolution. One main
tage is that the resulting data layout is independent of the
ular adaptive traversal of the data. Moreover the same data
t can be used with different blocking factors making it
icial throughout the entire memory hierarchy.
(a) (b)

(c) (d)

coarse data new level data

Figure 2: The sequence of Z-order space filling curves
used to define a hierarchical sub-sampling stricture over
a 2D rectilinear grid. At each refinement of the Z curve
the green vertices represent the coarse data, while the
red vertices represent the finer resolution information.
Samples are stored in the order of the curve traversal,
with only the new level data stored for each level of the
hierarchy.
3. GENERAL FRAMEWORK
This section discusses a general framework for the definition of
hierarchical indexing schemes yielding efficient external
memory processing performance. The simplest realization of
this scheme is based on mere sub-sampling the input data. For
example we will show in the following sections how the
Lebesgue space-filling curve of Figure 1a-e can be used as in
Figure 2 to define a hierarchical sub-sampling of a rectilinear

5

grid. More sophisticated schemes can be realized within this
framework but will not discussed further here.
Consider a set S of n elements decomposed into a hierarchy H of
k levels of resolution H = {S0, S1, …, Sk-1} such that:

S0 ⊂ S1 ⊂ … ⊂ Sk-1 = S

where Si is said to be coarser than Sj iff i < j. The order of the
elements in S is defined by the cardinality function I : S → {0 …
n-1}. This means that the following identity always holds:

S[I(s)] ≡ s

where the square brackets are used to index an element in a set.

We can define a derived sequence H′ of sets S′i as follows:

S′i = Si \ Si -1 i = 0, … , k-1

Where formally S-1 = ∅. The sequence H′ = { S′0, S′1, …, S′k-1}
is a partitioning of S. A derived cardinality function I′ : S → {0
… n-1} can be defined on the basis of the following properties:

∀s, t ∈ S′i : I′(s) < I′(t) ⇔ I(s) < I(t);

∀s ∈ S′i, ∀t ∈ S′j : i < j ⇒ I′(s) < I′(t).

If the original function I has strong locality properties when
restricted to any level of resolution Si then the cardinality
function I′ generates the desired global index for hierarchical
and out-of-core traversal.
The construction of the function can be achieved in the
following manner: (i) determine the number of elements in each
derived set S′i and (ii) determine a cardinality function I″i = I′ |
S′j restriction of I′ to each set S′j. In particular if ci is the number
of elements of S′i one can predetermine the starting index of the
elements in a given level of resolution by building the sequence
of constants C0, … , Ck-1 with

 ∑
−

=

=
1

0

i

j
ji cC (1)

Secondly one needs to determine a set of local cardinality
functions I″i : S′j → {0 … ci -1} so that

 ∀s ∈ S′i : I′(s) = Ci + I″i (s) (2)

The computation of the constants Ci can be performed in a pre-
processing stage so that the computation of I′ is reduced to the
following two steps:

(1) Given s, determine its level of resolution i (that is the
i such that S ∈ S′i);

(2) Compute I″i (s) and add it to Ci

These two steps need to be performed very efficiently because
they are going to be executed repeatedly at run time. The
following section reports a practical realization of this scheme
for rectilinear cube grids in any dimension.

4. 2n TREE AND THE LEBESQUE CURVE
Here we detail the derivation from the Z-order space filling
curve the local cardinality functions I″i for a binary tree
hierarchy in any dimension.

4.1 Indexing the Lebesgue Curve
The Lebesgue space filling curve, also called Z-order space
filling curve for its shape in the 2D case, is depicted in Figure 1.
In the 2D case the curve can be defined inductively by a base Z
shape of size 1 (Figure 1a) whose vertices are replaced each by a
Z shape of size ½. The vertices obtained are then replaced by Z
shapes of size ¼ (Figure 1c) and so on. In general the ith level of
resolution is defined as the curve obtained by replacing the
vertices of the (i – 1) th level of resolution with Z shapes of size
(1/2i). The 3D version of this space filling curve has the same
hierarchical structure with the only difference that the basic Z
shape is replaced by a connected pair of Z shapes lying on the
opposite faces of a cube as shown in f. Figure 1f-j shows five
successive refinements of the 3D Lebesgue space filling curve.
The d-dimensional version of the space filling curve has also the
same hierarchical structure where the basic shape (the Z of the
2D case) is defined as a connected pair of (d – 1)-dimensional
basic shapes lying on the opposite faces of a d-dimensional
cube.
The property that makes the Lebesgue’s space filling curve
particularly attractive is the easy conversion from the d indices
of d-dimensional matrix to the 1D index along the curve. If one
element e has d-dimensional reference (i1, …, id) its 1D
reference is built by interleaving the bits of the binary
representations of the indices i1, …, in. In particular if ij is
represented by the string of h bits “b1

j b2
j … bh

j” with j = 1, …,
d) then the 1D reference of e is represented the string of hd bits I
= “b1

1 b1
2 … b1

d b2
1 b2

2 … b2
d … bh

1 bh
2 … bh

d”. Figure 3
illustrates this interleaving scheme in the 3D case.

4.2 Index Remapping
The cardinality function discussed in Section 3 for the case of a
quad-tree yields the index remapping shown in Table 1 for the
first three levels.
The structure of the 2l - tree defined on the Z-order space filling
curve allows to determine easily the three elements that are
necessary for the computation of the cardinality which are: (i)
the level i of an element, (ii) the constants Ci of equation (1) and
(iii) the local indices I″i. Following the notation of Section 3 we
have:

i - if the 2l-tree hierarchy has k levels then the element of Z-
order index j belongs to the level k - h where h is the
number of trailing zeros in the binary representation of j
divided by l:

i = k - h

k

I

i j
Figure 3: Construction of the 1D index for the Lebesgue’s Z-
order space filling curve. In the 3D case the original index is a
set of three bit-strings (i,j,k). The 1D index I is formed by
interleaving the bits of i,j and k into a single bit-string.

S

S

S

F
fo

Ci - the number of elements in the levels coarser than I, with i
> 0, is

Ci = 2l(i-1)

with C0 = 0.

I″i - if an element has index j and belongs to the set S″i then
j/2li has one of its last l bits different from 0. The local
index is then:

I″i (j) = j/2li - j/2l(i+1) -1

The computation of the local index I″i can be explained easily
by looking at the bottom right part of Table 1 where the
sequence on indices (1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15) needs
to be remapped to the local index (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11). Note how each original sequence of three consecutive
numbers needs to be decreased by the same amount. From the
sequence (1,2,3) one has to subtract 1 to get (0, 1, 2). From (5, 6,
7) one has to subtract 2 to get (3, 4, 5) and so on. In general the
subtrahend is 1 plus the index divided by four.

The computation of the final index I′(s) = Ci + I″i(s) is then

per
term
righ
don
obt
of
Fig
mat
tha
into

larger) corresponds to data that is distributed increasingly locally
on the 2D matrix.

5. PROGRESSIVE SLICING
To demonstrate the utility of this indexing scheme, an
implementation of the indexing scheme for the computation and
display of arbitrary slices based on standard operating system
I/O primitives was developed for Unix and Windows. The data
access model consists of a fixed size memory cache and a
compressed disk file format with associated meta-data. A planar
slice through the dataset is realized as a set of point samples on
at 2D grid orientated with arbitrary attitude in the data volume.
1

IAdd a high bit set to 1

0 0 0x xxLoop: while

0 0 0 x x x 0 0 0

0 0 00 0 1

zeros inserted ~

~

~

~

+

Perform the following arithmetic operationTEP3

TEP2

TEP1

= shift right 3 bits with incoming bits set to 0

igure 4: Diagram of the algorithm for index remapping
r blocks that scale with a factor of 8 (three bits).
6

formed with the algorithm shown in Figure 4. Note how the
 sum Ci + I″i(s) is computed directly by shifting I(s) to the
t and adding the complement of its high bits. This can be
e because Ci = 2l(i-1) and hence Ci - j/2l(i+1) - 1 can be
ained directly by complementing the rightmost l(k - i - 1) bits
j/2l(i+1).
ure 5 illustrates the data layout when the elements of a 2D
rix are reordered following the index I′. The general pattern

t emerges is that the decomposition of the 1D array of data
 a sequence of blocks of the same size (the first is slightly

Level 0 Level 1 Level 2

B0 B1 B5 B9 B13 B17

B2 B6 B10 B14 B18

B3 B7 B11 B15 B19

B4 B8 B12 B16 B20

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17

Figure 5: Data layout obtained for a 2D matrix. The 1D
array at the top of the diagram represents the disk
distribution of the data. Each of the consecutive blocks in
the 1D array corresponds to data of progressively finer
resolution in the 2D matrix, distributed in an increasingly
Table 1: Structure of the hierarchical indexing scheme for a quad-tree combined with the order defined by the Lebesgue space
filling curve.

Level 0 1 2
Z-order index (1 level) 0
Z-order index (2 levels) 0 1 2 3
Z-order index (3 levels) 0 4 8 12 1 2 3 5 6 7 9 10 11 13 14 15
Hierarchical index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
The input to the I/O layer is this set of points and their
associated level (resolution) in the index hierarchy. Individual
sample points are converted into a data index using the
hierarchical Z order space-filling curve. This index is converted
to a virtual block number and a local index within the block by
simple division. The block number is queried in the cache. If the
block is in the cache, the sample for the point is accessed and
returned, otherwise, an asynchronous I/O operation for that
block is added to an I/O queue and the point marked as pending.
Point processing continues until all points have been resolved
(including pending points) or the system has exceeded a
predetermined processing time limit. The block cache is filled

7

asynchronously by I/O threads, which read compressed blocks
from disk, decompress them into the cache, and resolve any
sample points pending on that cache operation.
An interface thread determines the orientation and position of
the current slice plane and sends planar requests to the I/O layer.
As data values return from the I/O layer the interface thread fills
in the output texture while the plane is being displayed
asynchronously. This simple mechanism produces instant coarse
resolution and progressive improvement of the slice image (see
Figure 6).
The current implementation does not include speculative
prefetching of the data or other mechanisms that pipeline the
cost of the I/O performed with the exception of threaded block
decompression. The timings in the charts include both the
complete disk access time and data decompression time for each
frame. In this way we are able to evaluate of the total amount of
resources used and perform fair comparisons among several
alternative indexing schemes. The blocking factor for the data
was selected arbitrarily to be 64KB and compression was
provided by zlib. Further improvement of the interactivity may
be achieved utilizing a more efficient data compression methods
and data-prefetching.
We compare the performance of the same progressive slicing
scheme for four different data layouts: (Array) storage of the
data as a standard row major array, (brick blocking)
decomposition of the data in cubes of size equal to the disk
pages, (1-bit hierarchical Z-order) introduced in [25] and (3-bit
hierarchical Z order) introduced in the previous section. In the
graphs the rotation tests report average timings for rotating
slices over each primary axis, while the translation tests report
the average time for translating orthographic slices along each
axis. The dataset is one timestep of the PPM dataset [21] shown

(sampling rate=1/32) (sampling rate=1/16) (sampling rate=1/8) (sampling rate=1/4)

Figure 6: Progressive refinement of two slices of one timestep of the 2048x2048x1920 dataset from [21]. The images in the left
column are rendered at the coarsest resolution using one sample every thirtytwo along each axis of the input grid. Each row
shows the progressive sequence of textures obtained for each slice by increasing the sampling rate up to 1/4. Note how the detail
is increased with the sampling rate. (top row) Slice perpendicular to the z axis. (bottom row) Slice at an arbitrary orientation.

0.0001

0.001

0.01

0.1

1

10

1 2 4 8 16 32 64
Subsampling Rate

A
ve

ra
ge

 T
im

e
(s

)

Array Brick blocking
1-bit hierachical Z-order 3-bit hierachical Z-order

0.0001

0.001

0.01

0.1

1

10

100

1 2 4 8 16 32 64
Subsampling Rate

A
ve

ra
ge

 T
im

e
(s

)

Array Brick blocking
1-bit hierachical Z-order 3-bit hierachical Z-order

Figure 7: Average 5122 slice computation times for a 20483

grid on a Linux laptop (500Mhz Pentium III, 20MB memory
cache). (top) Slicing times obtained averaging the slice
computation time over a sequence of parallel slices. (bottom)
Slicing times obtained averaging the slice computation time
over a sequence of slices rotate around a common axis.

8

in Figure 6. The timestep is a 2048x2048x1920 array of 8bit
intensity values. Note that the timings are reported in
logarithmic scale. Generally our new 3-bit hierarchical Z-order
outperforms all other schemes. The 3-bit hierarchical Z order
can be twice as fast as the 1-bit hierarchical Z order and orders
of magnitude faster than the array and brick decomposition
schemes.
Figure 7 shows the timings obtained on a Linux laptop for
progressive slicing of the 2048x2048x1920 grid. The amount of
cache memory used to achieve this result is only of 20MB.
Figure 8 shows the timing obtained on an SGI Onyx2 for
progressive slicing of an artificial 81923 dataset obtained by
replicating 64 times (4x4x4) one timestep of the PPM dataset.
60MB of RAM and four threads were used in generating this
result. The scheme appears to scale very well with the size of the
input grid as witnessed by the relatively modest increase in
computational resources necessary to scale to a dataset 64 times
larger. More problematic is the scaling with the size of the
output texture. The results presented in the previous graphs are
based on output textures of 5122 resolution. This resolution
many not be sufficient for newer high-pixel count displays.

Figure 9 shows the timing for an output texture of 20482
resolution, which may be more appropriate for such displays.
Performance begins to decline as the higher output resolution
exposes inefficiencies in our caching and queuing

implementations. For example, a much larger memory cache is
necessary to avoid trashing as the output matrix size increases.
Fortunately only a moderate amount processing power is used
by the scheme, so that we can use object space parallelism to
improve performance. In particular we can maintain the same
level of interactivity shown in Figure 8 by dividing the texture in
16 tiles of 5122 resolution and use them to compose a high
resolution output texture at real time rates. It may also be
possible to improve the performance of the serial
implementation by enhancing our cache implementation. The
need for increased cache memory may be minimized by
traversing the 2D grid along a space filling curve as well.

F
g
c
c
S
o

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

100.0000

1 2 4 8 16 32 64
Subsampling Rate

A
ve

ra
ge

 T
im

e
(s

)

Array Brick blocking
1-bit hierachical Z-order 3-bit hierachical Z-order

0.001

0.010

0.100

1.000

10.000

100.000

1000.000

1 2 4 8 16 32 64
Subsampling Rate

A
ve

ra
ge

 T
im

e
(s

)

Array Brick blocking
1-bit hierachical Z-order 3-bit hierachical Z-order

Figure 8: Average 5122 slice computation times for a 20483

grid on an SGI Onyx (300Mhz R12000, 60MB memory
cache). (top) Slicing times obtained averaging the slice
computation time over a sequence of parallel slices. (bottom)
Slicing times obtained averaging the slice computation time
over a sequence of slices rotate around a common axis.
6. CONCLUSIONS

0.001
0.010
0.100
1.000

10.000
100.000

1000.000
10000.000

1 2 4 8 16 32 64

Subsampling Rate

A
ve

ra
ge

 T
im

e
(s

)

Array Brick blocking
1-bit hierachical Z-order 3-bit hierachical Z-order

0.001
0.010
0.100
1.000

10.000
100.000

1000.000
10000.000

1 2 4 8 16 32 64

Subsampling Rate

A
ve

ra
ge

 T
im

e
(s

)

Brick blocking 1-bit hierachical Z-order
3-bit hierachical Z-order

igure 9: Average 20482 slice computation times for a 81923

rid on an SGI Onyx (300Mhz R12000, 60MB memory
ache). (top) Slicing times obtained averaging the slice
omputation time over a sequence of parallel slices. (bottom)
licing times obtained averaging the slice computation time
ver a sequence of slices rotate around a common axis.
This paper introduces a new indexing and data layout scheme
that is useful for out-of-core hierarchical traversal of large
datasets. Practical tests for the case of progressive slicing of
rectilinear grids demonstrate the performance improvements that
can be achieved with this approach. For example we can
translate and rotate planar slices of an 81923 grid achieving real-
time interaction rates. In the near future this scheme will be used
as the basis for out-of-core volume visualization, computation of
isocontours and navigation of large terrains.
Future directions being considered include the combination with
wavelet compression schemes, the extension to general

9

rectangular grids, distributed memory implementations and
application to non-rectilinear hierarchies.

7. ACKNOWLEDGMENTS
We would like to thank to a number of people who contributed
to this project, including Mark Duchaineau and Sean Ahern at
LLNL. The example dataset appears courtesy of Art Mirin of
LLNL.
This work was performed under the auspices of the U.S.
Department of Energy by the University of California, Lawrence
Livermore National Laboratory under contract No. W-7405-
Eng-48 (UCRL-JC-144754). It was supported in part by the
Accelerated Strategic Computing Initiative and the Visual
Interactive Environment for Weapons Simulations (VIEWS)
program.

8. REFERENCES
[1] Abello, J., and Vitter, J.S., (eds.). External Memory

Algorithms and Visualization. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science. American
Mathematical Society Press, Providence, RI, 1999.

[2] Arge, L., and Miltersen, P.B., On showing lower bounds
for external-memory computational geometry problems. In
Abello, J., and Vitter, J.S., editors, External Memory
Algorithms and Visualization, DIMACS Series in Discrete
Mathematics and Theoretical Computer Science. American
Mathematical Society Press, Providence, RI, 1999.

[3] Asano, T., Ranjan, D., Roos, T., and Welzl, E., Space
filling curves and their use in the design of geometric data
structures. Lecture Notes in Computer Science, 911:36–44,
1995.

[4] Bajaj, C.L., Pascucci, V., Thompson, D., and Zhang, X.Y.,
Parallel accelerated isocontouring for out-of-core
visualization. In Spencer, S.N., editor, Proceedings of the
1999 IEEE Parallel Visualization and Graphics Symposium
(PVGS‘99), pages 97–104, N.Y., October 25–26 1999.
ACM Siggraph.

[5] Balmelli, L., Kovačević, J., and Vetterli, M., Quadtree for
embedded surface visualization: Constraints and efficient
data structures. In IEEE International Conference on Image
Processing (ICIP), Kobe Japan, October 1999.

[6] Balmelli, L., Kovačević, J., and Vetterli, M., Solving the
coplanarity problem of regular embedded triangulations. In
Proceedings of the Workshop on Vision, Modeling and
Visualization, November 1999.

[7] Bandou, Y., and Kamata, S.I., An address generator for a 3-
dimensional pseudo-hilbert scan in a cuboid region. In
International Conference on Image Processing, ICIP99,
volume I, 1999.

[8] Bandou, Y., and Kamata, S.I., An address generator for an
n-dimensional pseudo-hilbert scan in a hyper-rectangular
parallelepiped region. In International Conference on
Image Processing, ICIP 2000, 2000. to appear.

[9] Chatterjee, S., Lebeck, A.R., Patnala, P.K., and
Thottethodi, M., Recursive array layouts and fast parallel
matrix multiplication. In Proceedings of the 11th Annual
ACM Symposium on Parallel Algorithms and

Architectures, pages 222–231, Saint-Malo, France, June
27–30, 1999. SIGACT/SIGARCH and EATCS.

[10] Chiang, Y.J., and Silva, C.T., I/O optimal isosurface
extraction. In Yagel, R., and Hagen, H., editors, IEEE
Visualization´ 97, pages 293–300. IEEE, November 1997.

[11] Duchaineau, M.A., Wolinsky, M., Sigeti, D.E., Miller,
M.C., Aldrich, C., and Mineev-Weinstein, M.B., Roaming
terrain: Real-time optimally adapting meshes. IEEE
Visualization ’97, pages 81–88, November 1997.

[12] Frens, J.D., and Wise, D.S., Auto-blocking matrix-
multiplication or tracking BLAS3 performance from source
code. ACM SIGPLAN Notices, 32(7):206–216, July 1997.

[13] Goodrich, M.T., Tsay, J.J., Vengroff, D.E., and Vitter, J.S.,
External-memory computational geometry. In Proceedings
of the 34th Annual IEEE Symposium on Foundations of
Computer Science (FOCS ’93), Palo Alto, CA, November
1993.

[14] Griebel, M., and Zumbusch, G.W., Parallel multigrid in an
adaptive pde solver based on hashing and space-filling
curves. 25:827:843, 1999.

[15] Hilbert, D., Über die stetige abbildung einer linie auf ein
flachenstück. Mathematische Annalen, 38:459–460, 1891.

[16] Kamata, S.I., and Bandou, Y., An address generator of a
pseudo-hilbert scan in a rectangle region. In International
Conference on Image Processing, ICIP97, volume I, pages
707–714, 1997.

[17] Lawder, J.K., The Application of Space-filling Curves to
the Storage and Retrieval of Multi-Dimensional Data. PhD
thesis, School of Computer Science and Information
Systems, Birkbeck College, University of London, 2000.

[18] Lawder, J.K., and King, P.J.H., Using space-filling curves
for multi-dimensional indexing. In Brian Lings and Keith
Jeffery, editors, proceedings of the 17th British National
Conference on Databases (BNCOD 17), volume 1832 of
Lecture Notes in Computer Science, pages 20–35. Springer
Verlag, July 2000.

[19] Lindstrom, P., Koller, D., Ribarsky, W., Hughes, L.F.,
Faust, N., and Turner, G., Real-time, continuous level of
detail rendering of height fields. Proceedings of
SIGGRAPH 96, pages 109–118, August 1996.

[20] Matias, Y., Segal, E., and Vitter, J.S., Efficient bundle
sorting. In Proceedings of the 11th Annual SIAM/ACM
Symposium on Discrete Algorithms (SODA ’00), January
2000.

[21] Mirin, A., Performance of large-scale scientific
applications on the IBM ASCI blue-pacific system. In
Ninth SIAM Conf. of Parallel Processing for Scientific
Computing, Philadelphia, Mar 1999. SIAM. CD-ROM.

[22] Niedermeier, R., Reinhardt, K., and Sanders, P., Towards
optimal locality in meshindexings, 1997.

[23] Niedermeier, R., and Sanders, P., On the manhattan-
distance between points on space-filling mesh-indexings.
Technical Report iratr-1996-18, Universität Karlsruhe,
Informatik für Ingenieure und Naturwissenschaftler, 1996.

10

[24] Parashar, M., Browne, J.C., Edwards, C., and Klimkowski,
K., A common data management infrastructure for adaptive
algorithms for pde solutions. In SuperComputing 97, 1997.

[25] Pascucci, V., and Frank, R.J., Hierarchical indexing for
out-of-core access to multi-resolution data. Technical
Report UCRL-JC-140581, Lawrence Livermore National
Laboratory, 2001. A preliminary version was presented at
the Lake Tahoe Workshop NSF/DOE Lake Tahoe
Workshop on Hierarchical Approximation and Geometrical
Methods for Scientific Visualization.

[26] Rivara, M.C., Algorithms for refining triangular grids
suitable for adaptive and multigrid techniques.
International Journal for Numerical Methods in
Engineering, 20:745–756, 1984.

[27] Sagan, H., Space-Filling Curves. Springer-Verlag, New
York, NY, 1994.

[28] Samet, H., Applications of Spatial Data Structures.
Addison-Wesley, Reading, Mass., 1990. chapter on ray
tracing and efficiency, also discusses radiosity.

[29] Vitter, J.S., External memory algorithms and data
structures: Dealing with massive data. ACM Computing
Surveys, March 2000.

[30] Wise, D.S., Ahnentafel indexing into Morton-ordered
arrays, or matrix locality for free. In Euro-Par 2000 –
Parallel Processing, volume 1900 of Lecture Notes in
Computer Science, pages 774–784. Springer, August 2000.

	ABSTRACT
	INTRODUCTION
	PREVIOUS WORK
	GENERAL FRAMEWORK
	2n TREE AND THE LEBESQUE CURVE
	Indexing the Lebesgue Curve
	Index Remapping

	PROGRESSIVE SLICING
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

